Displaying similar documents to “Almost symplectic structures and harmonic morphisms”

Harmonic morphisms onto Riemann surfaces and generalized analytic functions

Paul Baird (1987)

Annales de l'institut Fourier

Similarity:

We study harmonic morphisms from domains in R 3 and S 3 to a Riemann surface N , obtaining the classification of such in terms of holomorphic mappings from a covering space of N into certain Grassmannians. We show that the only non-constant submersive harmonic morphism defined on the whole of S 3 to a Riemann surface is essentially the Hopf map. Comparison is made with the theory of analytic functions. In particular we consider multiple-valued harmonic morphisms defined on domains...

Harmonic morphisms between riemannian manifolds

Bent Fuglede (1978)

Annales de l'institut Fourier

Similarity:

A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be...

Harmonic morphisms and circle actions on 3- and 4-manifolds

Paul Baird (1990)

Annales de l'institut Fourier

Similarity:

Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms ϕ : M N from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on M with possible fixed points. This restricts the topology of M . In all cases, a harmonic morphism ϕ : M N from...