Displaying similar documents to “Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group”

Stationary states for a two-dimensional singular Schrödinger equation

Paolo Caldiroli, Roberta Musina (2001)

Bollettino dell'Unione Matematica Italiana

Similarity:

In questo articolo studiamo problemi di Dirichlet singolari, lineari e semilineari, della forma x 2 Δ u = f u in Ω , u = 0 su Ω , dove Ω è un dominio in R 2 e f u = λ u o f u = λ u + u p - 2 u con p > 2 (o nonlinearità più generali). In tali problemi bidimensionali emergono alcune difficoltà a causa della non validità della disuguaglianza di Hardy in R 2 e a causa delle invarianze dell'equazione - x 2 Δ u = f u . Pertanto opportune condizioni su λ e Ω sono necessarie al fine di garantire l'esistenza di una soluzione positiva. Per esempio, se Γ 0 è una curva...

Existence and boundedness of minimizers of a class of integral functionals

A. Mercaldo (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type f ( x , η , ξ ) a ( x ) | ξ | p ( 1 + | η | ) α - b 1 ( x ) | η | β 1 - g 1 ( x ) , f ( x , η , 0 ) b 2 ( x ) | η | β 2 + g 2 ( x ) , where 0 α < p , 1 β 1 < p , 0 β 2 < p , α + β i p , a x , b i x , g i x ( i = 1 , 2 ) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space W 1 , p a , which assume a boundary datum u 0 W 1 , p a L Ω .

Infinitely many solutions for a class of semilinear elliptic equations in R N

Francesca Alessio, Paolo Caldiroli, Piero Montecchiari (2001)

Bollettino dell'Unione Matematica Italiana

Similarity:

Si considera una classe di equazioni ellittiche semilineari su R N della forma - Δ u + u = a x u p - 1 u con p > 1 sottocritico (o con nonlinearità più generali) e a x funzione limitata. In questo articolo viene presentato un risultato di genericità sull'esistenza di infinite soluzioni, rispetto alla classe di coefficienti a x limitati su R N e non negativi all'infinito.

One-dimensional symmetry for solutions of quasilinear equations in R 2

Alberto Farina (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we consider two-dimensional quasilinear equations of the form div a u u + f u = 0 and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of u (notice that arg u is a well-defined real function since u > 0 on R 2 ) we prove that u is one-dimensional, i.e., u = u ν x for some unit vector ν . As a consequence of our result we obtain that any solution u having one positive derivative is one-dimensional. This result provides...