Infinitely many solutions for a class of semilinear elliptic equations in R N

Francesca Alessio; Paolo Caldiroli; Piero Montecchiari

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-B, Issue: 2, page 311-317
  • ISSN: 0392-4041

How to cite

top

Alessio, Francesca, Caldiroli, Paolo, and Montecchiari, Piero. "Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$." Bollettino dell'Unione Matematica Italiana 4-B.2 (2001): 311-317. <http://eudml.org/doc/194619>.

@article{Alessio2001,
author = {Alessio, Francesca, Caldiroli, Paolo, Montecchiari, Piero},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {semilinear elliptic equation; existence of solutions; mountain pass},
language = {eng},
month = {6},
number = {2},
pages = {311-317},
publisher = {Unione Matematica Italiana},
title = {Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb\{R\}^N$},
url = {http://eudml.org/doc/194619},
volume = {4-B},
year = {2001},
}

TY - JOUR
AU - Alessio, Francesca
AU - Caldiroli, Paolo
AU - Montecchiari, Piero
TI - Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/6//
PB - Unione Matematica Italiana
VL - 4-B
IS - 2
SP - 311
EP - 317
LA - eng
KW - semilinear elliptic equation; existence of solutions; mountain pass
UR - http://eudml.org/doc/194619
ER -

References

top
  1. ALAMA, S.- LI, Y. Y., Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Diff. Eq., 96 (1992), 88-115. Zbl0766.35009MR1153310
  2. ALESSIO, F.- MONTECCHIARI, P., Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 107-135. Zbl0919.34044MR1668564
  3. ALESSIO, F.- CALDIROLI, P.- MONTECCHIARI, P., Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 885-901. Zbl0941.34032MR1719214
  4. ALESSIO, F.- CALDIROLI, P.- MONTECCHIARI, P., Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in R N , Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 47-68. Zbl0931.35047MR1658893
  5. ALESSIO, F.- CALDIROLI, P.- MONTECCHIARI, P., On the existence of homoclinics for the asymptotically periodic Duffing equation, Top. Meth. Nonlinear Anal., 12 (1998), 275-292. Zbl0931.34028MR1701264
  6. AMBROSETTI, A.- BADIALE, M., Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 233-252. Zbl1004.37043MR1614571
  7. AMBROSETTI, A.- BADIALE, M.- CINGOLANI, S., Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., 140 (1997), 285-300. Zbl0896.35042MR1486895
  8. ANGENENT, S., The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S. N. Chow and J. K. Hale eds.) F37 (1987). Zbl0653.35030MR921893
  9. BAHRI, A.- LI, Y. Y., On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in R n , Rev. Mat. Iberoamericana, 6 (1990), 1-15. Zbl0731.35036MR1086148
  10. BAHRI, A.- LIONS, P. L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré, Anal. non linéaire, 14 (1997), 365-413. Zbl0883.35045MR1450954
  11. BERESTYCKI, H.- LIONS, P. L., Nonlinear scalar field equations, Arch. Rat. Mech. Anal., 82 (1983), 313-345. Zbl0533.35029MR695535
  12. BESICOVITCH, A. S., Almost Periodic Functions, Dover Pubblications Inc. (1954). Zbl0065.07102MR68029
  13. CAO, D. M., Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in R n , Nonlinear Anal. T.M.A., 15 (1990), 1045-1052. Zbl0729.35049MR1082280
  14. CAO, D. M., Multiple solutions of a semilinear elliptic equation in R n , Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 593-604. Zbl0797.35039MR1253603
  15. CAO, D. M. AND NOUSSAIR, E. S., Multiplicity of positive and nodal solutions for nonlinear elliptic problems in R n , Ann. Inst. H. Poincaré, Anal. Non Linéaire, 13 (1996), 567-588. Zbl0859.35032MR1409663
  16. COTI ZELATI, V.- EKELAND, I.- SEÉRÉ, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160. Zbl0731.34050MR1070929
  17. COTI ZELATI, V.- RABINOWITZ, P. H., Homoclinic type solutions for a semilinear elliptic PDE on R n , Comm. Pure Appl. Math., 45 (1992), 1217-1269. Zbl0785.35029MR1181725
  18. DEL PINO, M.- FELMER, P. L., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 127-149. Zbl0901.35023MR1614646
  19. DING, W. Y.- NI, W. M., On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), 283-308. Zbl0616.35029MR807816
  20. ESTEBAN, M. J.- LIONS, P. L., Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), 1-14. Zbl0506.35035MR688279
  21. GIDAS, B.- NI, W.-M.- NIRENBERG, L., Symmetry of positive solutions of nonlinear elliptic equations in R n , Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies, 7A (1981), 369-402. Zbl0469.35052
  22. GUI, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. Zbl0857.35116MR1391524
  23. LI, Y., Remarks on a semilinear elliptic equations on R N , J. Diff. Eq., 74 (1988), 34-39. Zbl0662.35038MR949624
  24. LI, Y. Y., Prescribing scalar curvature on S 3 , S 4 and related problems, J. Funct. Anal., 118 (1993), 43-118. Zbl0790.53040MR1245597
  25. LI, Y. Y., On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. Zbl1023.35500MR1606351
  26. LIONS, P.-L., The concentration–compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145 and 223-283. Zbl0704.49004
  27. MONTECCHIARI, P., Multiplicity results for a class of Semilinear Elliptic Equations on R m , Rend. Sem. Mat. Univ. Padova, 95 (1996), 1-36. Zbl0866.35043MR1405365
  28. MUSINA, R., Multiple positive solutions of a scalar field equation in R n , Top. Meth. Nonlinear Anal., 7 (1996), 171-185. Zbl0909.35042MR1422010
  29. NI, W. M., Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states (W. M. Ni, L. A. Peletier and J. Serrin, eds.) Springer Verlag, Berlin (1988). Zbl0676.35026MR956087
  30. RABINOWITZ, P. H., A note on a semilinear elliptic equation on R n , Nonlinear Analysis, a tribute in honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds., Quaderni della Scuola Normale Superiore, Pisa) (1991). Zbl0836.35045MR1205369
  31. RABINOWITZ, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. Zbl0763.35087MR1162728
  32. SÉRÉ, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 561-590. Zbl0803.58013MR1249107
  33. STRAUSS, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1979), 149-162. Zbl0356.35028MR454365
  34. STUART, C. A., Bifurcation in L p R n for a semilinear elliptic equation, Proc. London Math. Soc., 57 (1988), 511-541. Zbl0673.35005MR960098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.