Displaying similar documents to “Finite element derivative interpolation recovery technique and superconvergence”

What is the smallest possible constant in Céa's lemma?

Wei Chen, Michal Křížek (2006)

Applications of Mathematics

Similarity:

We consider finite element approximations of a second order elliptic problem on a bounded polytopic domain in d with d { 1 , 2 , 3 , ... } . The constant C 1 appearing in Céa’s lemma and coming from its standard proof can be very large when the coefficients of an elliptic operator attain considerably different values. We restrict ourselves to regular families of uniform partitions and linear simplicial elements. Using a lower bound of the interpolation error and the supercloseness between the finite element...

Finite element methods on non-conforming grids by penalizing the matching constraint

Eric Boillat (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

Approximation of the arch problem by residual-free bubbles

A. Agouzal, M. El Alami El Ferricha (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.

Superconvergence estimates of finite element methods for American options

Qun Lin, Tang Liu, Shu Hua Zhang (2009)

Applications of Mathematics

Similarity:

In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and...