What is the smallest possible constant in Céa's lemma?
Applications of Mathematics (2006)
- Volume: 51, Issue: 2, page 129-144
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- Survey lectures on the mathematical foundations of the finite element method, Math. Found. Finite Elem. Method Appl. Part. Differ. Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 1–359. (1972) MR0421106
- 10.1002/num.1690120303, Numer. Methods Partial Differ. Equations 12 (1996), 347–392. (1996) MR1388445DOI10.1002/num.1690120303
- 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489–505. (2003) MR1987941DOI10.1093/imanum/23.3.489
- Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27–36. (2005) MR2124141
- 10.5802/aif.181, Ann. Inst. Fourier 14 (1964), 345–444. (1964) MR0174846DOI10.5802/aif.181
- Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9 (1975), 77–84. (1975) MR0400739
- Optimal points of stresses for tetrahedron linear element, Natur. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (Chinese) (1980)
- Superconvergence of tetrahedral linear finite elements, Internat. J. Numer. Anal. Model. 3 (2006), 273–282. (2006) MR2237882
- The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- 10.1002/num.1690060105, Numer. Methods Partial Differ. Equations 6 (1990), 59–74. (1990) MR1034433DOI10.1002/num.1690060105
- On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition, Apl. Mat. 32 (1987), 131–154. (1987) MR0885758
- Superconvergence of the gradient of linear finite elements for 3D Poisson equation, In: Proc. Int. Symp. Optimal Algorithms, B. Sendov (ed.), Bulgarian Acad. Sci., Sofia, 1986, pp. 172–182. (1986)
- 10.1007/BF00047538, Acta Appl. Math. 9 (1987), 175–198. (1987) MR0900263DOI10.1007/BF00047538
- Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 50, Longman Scientific & Technical, Harlow, 1990. (1990) MR1066462
- Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1996. (1996) MR1431889
- 10.1147/rd.45.0518, IBM J. Res. Develop. 4 (1960), 518–524. (1960) Zbl0109.15603MR0124038DOI10.1147/rd.45.0518
- 10.1002/num.10078, Numer. Methods Partial Differ. Equations 20 (2004), 33–59. (2004) Zbl1042.65092MR2020249DOI10.1002/num.10078
- The Construction and Analysis for Efficient Finite Elements, Hebei Univ. Publ. House, , 1996. (Chinese) (1996)
- An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (Russian) (1969) MR0295599
- 10.2514/3.5067, AIAA J. 7 (1969), 178–180. (1969) DOI10.2514/3.5067
- Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math. Vol. 1605, Springer-Verlag, Berlin, 1995. (1995) MR1439050
- 10.1007/s002110100308, Numer. Math. 94 (2003), 195–202. (2003) MR1971217DOI10.1007/s002110100308
- The derivative good points for the finite element method with 2-degree triangular element, Nat. Sci. J. Xiangtan Univ. 1 (1981), 36–44. (Chinese) (1981)