Displaying similar documents to “An adaptive finite element method for solving a double well problem describing crystalline microstructure”

Numerical analysis of a relaxed variational model of hysteresis in two-phase solids

Carsten Carstensen, Petr Plecháč (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm...

Numerical approach to a rate-independent model of decohesion in laminated composites

Zeman, Jan, Gruber, Pavel

Similarity:

In this paper, we present a numerical approach to evolution of decohesion in laminated composites based on incremental variational problems. An energy-based framework is adopted, in which we characterize the system by the stored energy and dissipation functionals quantifying reversible and irreversible processes, respectively. The time-discrete evolution then follows from a solution of incremental minimization problems, which are converted to a fully discrete form by employing the conforming...

On the numerical modeling of deformations of pressurized martensitic thin films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

Similarity:

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis...

Local minimizers of functionals with multiple volume constraints

Édouard Oudet, Marc Oliver Rieger (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study variational problems with volume constraints, , with level sets of prescribed measure. We introduce a numerical method to approximate local minimizers and illustrate it with some two-dimensional examples. We demonstrate numerically nonexistence results which had been obtained analytically in previous work. Moreover, we show the existence of discontinuous dependence of global minimizers from the data by using a -limit argument and illustrate this with numerical computations....

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

Similarity:

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

Regularization of noncoercive constraints in Hencky plasticity

Jarosław L. Bojarski (2005)

Applicationes Mathematicae

Similarity:

The aim of this paper is to find the largest lower semicontinuous minorant of the elastic-plastic energy of a body with fissures. The functional of energy considered is not coercive.

A phase-field model for compliance shape optimization in nonlinear elasticity

Patrick Penzler, Martin Rumpf, Benedikt Wirth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Shape optimization of mechanical devices is investigated in the context of large, geometrically strongly nonlinear deformations and nonlinear hyperelastic constitutive laws. A weighted sum of the structure compliance, its weight, and its surface area are minimized. The resulting nonlinear elastic optimization problem differs significantly from classical shape optimization in linearized elasticity. Indeed, there exist different definitions for the compliance: the change in potential energy...

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

Similarity:

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method. ...