Displaying similar documents to “Forms representable by integral binary quadratic forms”

Halfway to a solution of X 2 - D Y 2 = - 3

R. A. Mollin, A. J. Van der Poorten, H. C. Williams (1994)

Journal de théorie des nombres de Bordeaux

Similarity:

It is well known that the continued fraction expansion of D readily displays the midpoint of the principal cycle of ideals, that is, the point halfway to a solution of x 2 - D y 2 = ± 1 . Here we notice that, analogously, the point halfway to a solution of x 2 - D y 2 = - 3 can be recognised. We explain what is going on.

On integral representations by totally positive ternary quadratic forms

Elise Björkholdt (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let K be a totally real algebraic number field whose ring of integers R is a principal ideal domain. Let f ( x 1 , x 2 , x 3 ) be a totally definite ternary quadratic form with coefficients in R . We shall study representations of totally positive elements N R by f . We prove a quantitative formula relating the number of representations of N by different classes in the genus of f to the class number of R [ - c f N ] , where c f R is a constant depending only on f . We give an algebraic proof of a classical result of H. Maass...

On traces of the Brandt-Eichler matrices

Juliusz Brzezinski (1998)

Journal de théorie des nombres de Bordeaux

Similarity:

We compute the numbers of locally principal ideals with given norm in a class of definite quaternion orders and the traces of the Brandt-Eichler matrices corresponding to these orders. As an application, we compute the numbers of representations of algebraic integers by the norm forms of definite quaternion orders with class number one as well as we obtain class number relations for some CM-fields.

The size function h 0 for quadratic number fields

Paolo Francini (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

We study the quadratic case of a conjecture made by Van der Geer and Schoof about the behaviour of certain functions which are defined over the group of Arakelov divisors of a number field. These functions correspond to the standard function h 0 for divisors of algebraic curves and we prove that they reach their maximum value for principal Arakelov divisors and nowhere else. Moreover, we consider a function k 0 ˜ , which is an analogue of exp h 0 defined on the class group, and we show it also...