The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the class numbers of certain quadratic extensions”

The size function h 0 for quadratic number fields

Paolo Francini (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

We study the quadratic case of a conjecture made by Van der Geer and Schoof about the behaviour of certain functions which are defined over the group of Arakelov divisors of a number field. These functions correspond to the standard function h 0 for divisors of algebraic curves and we prove that they reach their maximum value for principal Arakelov divisors and nowhere else. Moreover, we consider a function k 0 ˜ , which is an analogue of exp h 0 defined on the class group, and we show it also...

Unramified quaternion extensions of quadratic number fields

Franz Lemmermeyer (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields k correspond to certain factorizations of its discriminant disc k . In this paper we extend their results to unramified quaternion extensions of k which are normal over , and show how to construct them explicitly.

Maximal unramified extensions of imaginary quadratic number fields of small conductors, II

Ken Yamamura (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

In the previous paper [15], we determined the structure of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 1000 under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors 723 ) and give a table of Gal ( K u r / K ) . We update the table (under GRH). For 19 exceptional fields K of them, we determine Gal ( K u r / K ) . In particular, for K = 𝐐 ( - 856 ) , we obtain Gal ( K u r / K ) S 4 ˜ × C 5 and K u r = K 4 , the fourth Hilbert class field of K . This is the first example of a number...

On integral representations by totally positive ternary quadratic forms

Elise Björkholdt (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let K be a totally real algebraic number field whose ring of integers R is a principal ideal domain. Let f ( x 1 , x 2 , x 3 ) be a totally definite ternary quadratic form with coefficients in R . We shall study representations of totally positive elements N R by f . We prove a quantitative formula relating the number of representations of N by different classes in the genus of f to the class number of R [ - c f N ] , where c f R is a constant depending only on f . We give an algebraic proof of a classical result of H. Maass...