The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Dihedral extensions of Q of degree 21 which contain non-Galois extensions with class number not divisible by l”

The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer, S. Louboutin, R. Okazaki (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

On the Galois structure of the square root of the codifferent

D. Burns (1991)

Journal de théorie des nombres de Bordeaux

Similarity:

Let L be a finite abelian extension of , with 𝒪 L the ring of algebraic integers of L . We investigate the Galois structure of the unique fractional 𝒪 L -ideal which (if it exists) is unimodular with respect to the trace form of L / .

Counting cyclic quartic extensions of a number field

Henri Cohen, Francisco Diaz y Diaz, Michel Olivier (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we give asymptotic formulas for the number of cyclic quartic extensions of a number field.