The diophantine equation x² + 19 = yⁿ
J. H. E. Cohn (1992)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
J. H. E. Cohn (1992)
Acta Arithmetica
Similarity:
Zhi-Hong Sun (1998)
Acta Arithmetica
Similarity:
Lewittes, Joseph, Kolyvagin, Victor (2010)
The New York Journal of Mathematics [electronic only]
Similarity:
Zhi-Wei Sun (1992)
Acta Arithmetica
Similarity:
Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, . It is well known that for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether is always impossible; up to now this is still open. In this paper the sum is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient and a criterion for the relation (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative...
J. Browkin, A. Schinzel (1995)
Colloquium Mathematicae
Similarity:
W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers (k = 1, 2,...) is of the form n - φ(n).
Szabó, Sándor (2004)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Wayne McDaniel (1993)
Colloquium Mathematicae
Similarity:
Antone Costa (1992)
Acta Arithmetica
Similarity:
Moujie Deng, G. Cohen (2000)
Colloquium Mathematicae
Similarity:
Let a, b, c be relatively prime positive integers such that . Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of in positive integers is x=y=z=2. If n=1, then, equivalently, the equation , for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.