Displaying similar documents to “Lehmer's semi-symmetric cyclotomic sums”

Fibonacci numbers and Fermat's last theorem

Zhi-Wei Sun (1992)

Acta Arithmetica

Similarity:

Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, F n + 1 = F + F n - 1 ( n 1 ) . It is well known that F p - ( 5 / p ) 0 ( m o d p ) for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether p ² | F p - ( 5 / p ) is always impossible; up to now this is still open. In this paper the sum k r ( m o d 10 ) n k is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient F p - ( 5 / p ) / p and a criterion for the relation p | F ( p - 1 ) / 4 (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative...

On integers not of the form n - φ (n)

J. Browkin, A. Schinzel (1995)

Colloquium Mathematicae

Similarity:

W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers 2 k · 509203 (k = 1, 2,...) is of the form n - φ(n).

A note on a conjecture of Jeśmanowicz

Moujie Deng, G. Cohen (2000)

Colloquium Mathematicae

Similarity:

Let a, b, c be relatively prime positive integers such that a 2 + b 2 = c 2 . Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of ( a n ) x + ( b n ) y = ( c n ) z in positive integers is x=y=z=2. If n=1, then, equivalently, the equation ( u 2 - v 2 ) x + ( 2 u v ) y = ( u 2 + v 2 ) z , for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.