Displaying similar documents to “Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter”

Actuator fault tolerant control design based on a reconfigurable reference input

Didier Theilliol, Cédric Join, Youmin Zhang (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified...

Novel fault detection criteria based on linear quadratic control performances

Dušan Krokavec, Anna Filasová (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper proposes a new approach to designing a relatively simple algorithmic fault detection system that is potentially applicable in embedded diagnostic structures. The method blends the LQ control principle with checking and evaluating unavoidable degradation in the sequence of discrete-time LQ control performance index values due to faults in actuators, sensors or system dynamics. Design conditions are derived, and direct computational forms of the algorithms are given. A simulation...

Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems

Christopher Edwards, Halim Alwi, Chee Pin Tan (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications...

Active fault tolerant control of nonlinear systems: The cart-pole example

Marcello Bonfè, Paolo Castaldi, Nicola Mimmo, Silvio Simani (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper describes the design of fault diagnosis and active fault tolerant control schemes that can be developed for nonlinear systems. The methodology is based on a fault detection and diagnosis procedure relying on adaptive filters designed via the nonlinear geometric approach, which allows obtaining the disturbance de-coupling property. The controller reconfiguration exploits directly the on-line estimate of the fault signal. The classical model of an inverted pendulum on a cart...

Supervisory fault tolerant control of the GTM UAV using LPV methods

Tamás Péni, Báltin Vanek, Zoltán Szabó, József Bakor (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available...

Robust multisensor fault tolerant model-following MPC design for constrained systems

Alain Yetendje, Maria M. Seron, José A. De Doná (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means...

LPV design of fault-tolerant control for road vehicles

Péter Gáspár, Zoltán Szabó, József Bokor (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able...

Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach

Hao Yang, Bin Jiang, Vincent Cocquempot, Lingli Lu (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper focuses on supervisory fault tolerant control design for a class of systems with faults ranging over a finite cover. The proposed framework is based on a switched system approach, and relies on a supervisory switching within a family of pre-computed candidate controllers without individual fault detection and isolation schemes. Each fault set can be accommodated either by one candidate controller or by a set of controllers under an appropriate switching law. Two aircraft examples...

Nonlinear model predictive control of a boiler unit: A fault tolerant control study

Krzysztof Patan, Józef Korbicz (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of...