Displaying similar documents to “Nonlinear parabolic boundary value problems in the Orlicz-Sobolev spaces”

Parabolic initial-boundary value problems in Orlicz spaces

A. Elmahi, D. Meskine (2005)

Annales Polonici Mathematici

Similarity:

We prove some time mollification properties and imbedding results in inhomogeneous Orlicz-Sobolev spaces which allow us to solve a second order parabolic equation in Orlicz spaces.

Fine behavior of functions whose gradients are in an Orlicz space

Jan Malý, David Swanson, William P. Ziemer (2009)

Studia Mathematica

Similarity:

For functions whose derivatives belong to an Orlicz space, we develop their "fine" properties as a generalization of the treatment found in [MZ] for Sobolev functions. Of particular importance is Theorem 8.8, which is used in the development in [MSZ] of the coarea formula for such functions.

Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces

Takao Ohno, Tetsu Shimomura (2016)

Czechoslovak Mathematical Journal

Similarity:

We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type...

Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies

Elmostafa Bendib, Mustapha Khiddi (2025)

Applications of Mathematics

Similarity:

We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights...

Musielak-Orlicz-Sobolev spaces on metric measure spaces

Takao Ohno, Tetsu Shimomura (2015)

Czechoslovak Mathematical Journal

Similarity:

Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness...

Jung constants of Orlicz sequence spaces

Tao Zhang (2003)

Annales Polonici Mathematici

Similarity:

Estimation of the Jung constants of Orlicz sequence spaces equipped with either the Luxemburg norm or the Orlicz norm is given. The exact values of the Jung constants of a class of reflexive Orlicz sequence spaces are found by using new quantitative indices for 𝓝-functions.