Displaying similar documents to “On perturbation of continuous maps”

The Conley index theory: A brief introduction

Konstantin Mischaikow (1999)

Banach Center Publications

Similarity:

A brief introduction to the Conley index theory is presented. The emphasis is the fundamental ideas of Conley's approach to dynamical systems and how it avoids some of the difficulties inherent in the study of nonlinear systems.

The Conley index and countable decompositions of invariant sets

Marian Gidea (1999)

Banach Center Publications

Similarity:

We define a new cohomological index of Conley type associated to any bi-infinite sequence of neighborhoods that satisfies a certain isolation condition. We use this index to study the chaotic dynamics on invariant sets which decompose as countable unions of pairwise disjoint (mod 0) compact pieces.

A singular perturbation method for saddle connections and subharmonics of certain nonlinear differential equations with fixed saddle points.

Peter Smith (1990)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Saddle connections and subharmonics are investigated for a class of forced second order differential equations which have a fixed saddle point. In these equations, which have linear damping and a nonlinear restoring term, the amplitude of the forcing term depends on displacement in the system. Saddle connections are significant in nonlinear systems since their appearance signals a homoclinic bifurcation. The approach uses a singular perturbation method which has a fairly broad application...

Dynamical systems and shapes.

J.J. Sánchez-Gabites (2008)

RACSAM

Similarity:

This survey is an introduction to some of the methods, techniques and concepts from algebraic topology and related areas (homotopy theory, shape theory) which can be fruitfully applied to study problems concerning continuous dynamical systems. To this end two instances which exemplify the interaction between topology and dynamics are considered, namely, Conley’s index theory and the study of some properties of certain attractors.