On Riemann and Weyl Compatible Tensors
Ryszard Deszcz, Małgorzata Głogowska, Jan Jełowicki, Miroslava Petrović-Torgašev, Georges Zafindratafa (2013)
Publications de l'Institut Mathématique
Similarity:
Ryszard Deszcz, Małgorzata Głogowska, Jan Jełowicki, Miroslava Petrović-Torgašev, Georges Zafindratafa (2013)
Publications de l'Institut Mathématique
Similarity:
Deszcz, R. (1996)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Ryszard Deszcz, Małgorzata Głogowska, Hideko Hashiguchi, Marian Hotloś, Makoto Yawata (2013)
Colloquium Mathematicae
Similarity:
We investigate semi-Riemannian manifolds with pseudosymmetric Weyl curvature tensor satisfying some additional condition imposed on their curvature tensor. Among other things we prove that the so-called Roter type equation holds on such manifolds. We present applications of our results to hypersurfaces in semi-Riemannian space forms, as well as to 4-dimensional warped products.
Katarzyna Sawicz (2006)
Publications de l'Institut Mathématique
Similarity:
J. Deprez, R. Deszcz, L. Verstraelen (1988)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Ryszard Deszcz, Marian Hotloś, Zerrin Şentürk (1999)
Colloquium Mathematicae
Similarity:
M. S. Santos (2017)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
Ryszard Deszcz, Sahnur Yaprak (1994)
Colloquium Mathematicae
Similarity:
Filip Defever, Ryszard Deszcz (1993)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
Ryszard Deszcz, Marian Hotloś, Zerrin Sentürk (2001)
Colloquium Mathematicae
Similarity:
We investigate curvature properties of hypersurfaces of a semi-Riemannian space form satisfying R·C = LQ(S,C), which is a curvature condition of pseudosymmetry type. We prove that under some additional assumptions the ambient space of such hypersurfaces must be semi-Euclidean and that they are quasi-Einstein Ricci-semisymmetric manifolds.