Tame algebras with strongly simply connected Galois coverings

Andrzej Skowroński

Colloquium Mathematicae (1997)

  • Volume: 72, Issue: 2, page 335-351
  • ISSN: 0010-1354

How to cite

top

Skowroński, Andrzej. "Tame algebras with strongly simply connected Galois coverings." Colloquium Mathematicae 72.2 (1997): 335-351. <http://eudml.org/doc/210469>.

@article{Skowroński1997,
author = {Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {polynomial growth algebras; domestic algebras; strongly simply connected Galois coverings; critical convex subcategories; indecomposable modules; growth numbers; algebras of domestic type},
language = {eng},
number = {2},
pages = {335-351},
title = {Tame algebras with strongly simply connected Galois coverings},
url = {http://eudml.org/doc/210469},
volume = {72},
year = {1997},
}

TY - JOUR
AU - Skowroński, Andrzej
TI - Tame algebras with strongly simply connected Galois coverings
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 2
SP - 335
EP - 351
LA - eng
KW - polynomial growth algebras; domestic algebras; strongly simply connected Galois coverings; critical convex subcategories; indecomposable modules; growth numbers; algebras of domestic type
UR - http://eudml.org/doc/210469
ER -

References

top
  1. [1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450. Zbl0617.16018
  2. [2] I. Assem, A. Skowroński and B. Tomé, Coil enlargement of algebras, Tsukuba J. Math. 19 (1995), 453-479. Zbl0860.16014
  3. [3] R. Bautista, P. Gabriel, A. V. Roiter and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), 217-285. Zbl0575.16012
  4. [4] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220. Zbl0511.16022
  5. [5] K. Bongartz, Treue einfach zusammenhängende Algebren I, Comment. Math. Helv. 57 (1982), 282-330. Zbl0502.16022
  6. [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
  7. [7] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136. Zbl0537.16024
  8. [8] -, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12. Zbl0552.16012
  9. [9] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. Zbl0482.16026
  10. [10] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40. Zbl0527.16021
  11. [11] W. Crawley-Boevey, Tame algebras and generic modules, Proc. London Math. Soc. 63 (1991), 241-265. Zbl0741.16005
  12. [12] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529. Zbl0576.16029
  13. [13] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337. Zbl0628.16019
  14. [14] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258. 
  15. [15] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105. 
  16. [16] C. Geiss, On degenerations of tame and wild algebras, Arch. Math. (Basel) 64 (1995), 11-16. Zbl0828.16013
  17. [17] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. Zbl0516.16023
  18. [18] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  19. [19] M. Lersch, Minimal wilde Algebren, Diplomarbeit, Düsseldorf, 1987. 
  20. [20] R. Martínez-Villa and J. A. de la Peña, Automorphisms of a representationfinite algebra, Invent. Math. 72 (1983), 359-362. Zbl0491.16028
  21. [21] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth simply connected algebras, preprint, Bielefeld, 1996. Zbl0866.16006
  22. [22] J. A. de la Peña, Algebras with hypercritical Tits form, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 353-369. 
  23. [23] J. A. de la Peña, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185. Zbl0808.16018
  24. [24] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  25. [25] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 (1986), 245-264. Zbl0606.16021
  26. [26] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 535-568. 
  27. [27] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1988), 177-199. Zbl0653.16021
  28. [28] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, 1993, 431-447. Zbl0806.16012
  29. [29] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 173-183. Zbl0865.16011
  30. [30] A. Skowroński, Module categories over tame algebras, in: Representation Theory and Related Topics, Workshop Mexico 1994, CMS Conf. Proc. 19, 1996, 281-313. Zbl0856.16010
  31. [31] A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math., in press. Zbl0889.16004
  32. [32] L. Unger, The concealed algebras of the minimal wild, hereditary algebras, Bayreuth. Math. Schr. 31 (1990), 145-154. Zbl0739.16012
  33. [33] J. Wittman, Verkleidete zahme und minimal wilde Algebren, Diplomarbeit, Bayreuth, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.