Displaying similar documents to “Remarque sur les images continues d'ensembles”

Sur quelques propriétés topologiques du plan

Wacław Sierpiński (1923)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le suivant: Théorème 1: (1) Il existe une décomposition du plan en une somme de trois ensembles dont chacun est homéomorphe d'un ensemble linéaire, (2) Il n'existe aucune décomposition du plan en une somme de deux ensembles dont chacun soit homéomorphe d'un ensemble linéaire, (3) Il existe dans le plan un ensemble connexe qui est une somme d'une infinité dénombrable d'ensembles séparés deux a deux. et de construire des ensembles plans possédant quelques...

Contribution à la théorie des ensembles homéomorphes

M. Lavrentieff (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de donner des applications du théorème suivante: Théorème: S'il existe une correspondance bicontinue, univoque et réciproque entre deux ensembles donnés (situés dans un espace à m dimensions), il est possible de déterminer une correspondance de même nature entre les points de deux ensembles G_(δ) enfermant les ensembles donnes, la seconde correspondance coïncidant avec la première pour les points des deux ensembles donnés.

Sur les ensembles connexes et non connexes

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Définition: On dit que'un ensemble de points P est dispersé, s'il ne contient aucun ensemble connexe contenant plus qu'un point. Le but de cette note est de démontrer la solution de problèmes suivants: Problème 1: Deux points d'un ensemble dispersé, sont-ils nécessairement séparés dans cet ensemble? Problème 2: P étant un ensemble dont tout deux points sont séparés dans P, a étant un point donné de P et ϵ un nombre positif donné, peut-on toujours décomposer P en deux ensembles séparés...

Sur les images des fonctions représentables analytiquement

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de donner une condition nécessaire et suffisante à laquelle doit satisfaire l'image d'une fonction, pour qu'elle soit représentable analytiquement.