Displaying similar documents to “Sur les familles inductives et projectives d'ensembles”

Les fonctions continues et les ensembles (A)

Wacław Sierpiński (1925)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de montrer qu'un problème assez simple concernant les fonctions continues conduit aux ensembles (A) de Souslin. L'auteur prouve que pour toute fonction continue de deux variables f(x,y), définie pour 0≤ x ≤ 1, 0≤ y ≤ 1, A(f) (l'ensemble de toutes les valeurs de y, telle que pour x dans (0,1) il existe dans (0,1) une et seulement une valeur de y, telle que f(x,y)=0) est un ensemble (A), situe dans l'intervalle (0,1), et qu'inversement, pour tout ensemble E, dans...

Contribution à la théorie des ensembles homéomorphes

M. Lavrentieff (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de donner des applications du théorème suivante: Théorème: S'il existe une correspondance bicontinue, univoque et réciproque entre deux ensembles donnés (situés dans un espace à m dimensions), il est possible de déterminer une correspondance de même nature entre les points de deux ensembles G_(δ) enfermant les ensembles donnes, la seconde correspondance coïncidant avec la première pour les points des deux ensembles donnés.

Les projections des ensembles mesurables (B) et les ensembles (A)

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

L'auteur montre que la définition des ensembles (A), données par Souslin à l'aide des systèmes déterminants intervient aussi sans aucun artifice lorsqu'on étudie les projections des ensembles mesurables (B) d'une classe assez petite. Il prouve aussi que les ensembles (A) (linéaire) coïncident avec les projections (orthogonales) des ensembles plans G_{δ} (c'est-à-dire d'ensemble qui sont produits d'une infinité dénombrable d'ensembles ouvert).

Sur les images des fonctions représentables analytiquement

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de donner une condition nécessaire et suffisante à laquelle doit satisfaire l'image d'une fonction, pour qu'elle soit représentable analytiquement.