Displaying similar documents to “Measures on compact HS spaces”

Exceptional directions for Sierpiński's nonmeasurable sets

B. Kirchheim, Tomasz Natkaniec (1992)

Fundamenta Mathematicae

Similarity:

In [2] the question was considered in how many directions can a nonmeasurable plane set behave even "better" than the classical one constructed by Sierpiński in [6], in the sense that any line in a given direction intersects the set in at most one point. We considerably improve these results and give a much sharper estimate for the size of the sets of those "better" directions.

Weakly α-favourable measure spaces

David Fremlin (2000)

Fundamenta Mathematicae

Similarity:

I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.

On a one-dimensional analogue of the Smale horseshoe

Ryszard Rudnicki (1991)

Annales Polonici Mathematici

Similarity:

We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have φ ( T n x ) f ( x ) d x φ d μ , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then n - 1 i = 0 n - 1 φ ( T i x ) φ d μ for Lebesgue-a.e. x.

Countably metacompact spaces in the constructible universe

Paul Szeptycki (1993)

Fundamenta Mathematicae

Similarity:

We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a G δ . In addition some nonperfect spaces with σ-disjoint bases are constructed.

Uniformly completely Ramsey sets

Udayan Darji (1993)

Colloquium Mathematicae

Similarity:

Galvin and Prikry defined completely Ramsey sets and showed that the class of completely Ramsey sets forms a σ-algebra containing open sets. However, they used two definitions of completely Ramsey. We show that they are not equivalent as they remarked. One of these definitions is a more uniform property than the other. We call it the uniformly completely Ramsey property. We show that some of the results of Ellentuck, Silver, Brown and Aniszczyk concerning completely Ramsey sets also...