Sur les rapports entre les classifications des ensembles de MM. F. Hausdorff et Ch. de la Vallée Poussin
Wacław Sierpiński (1932)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1932)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1927)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1945)
Fundamenta Mathematicae
Similarity:
Jean-Pierre Kahane (1968)
Colloquium Mathematicae
Similarity:
Wacław Sierpiński (1937)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński
Similarity:
TABLE DES MATIÈRES CHAPITRE I. ALGEBRE DES PROPOSITIONS § 1. L'équivalence des propositions................ 1 § 2. L'implication................ 3 § 3. Produit logique et somme logique................ 7 § 4. Négation................ 11 § 5. Fonctions propositionnelles................ 24 § 6. Les quantificateurs................ 30 CHAPITRE II. ENSEMBLES, ÉLEMENTS, SOUS-ENSEMBLES § 7. Ensembles et leurs éléments................ 35 § 8, Egalité et inégalité des ensembles...................
Stefan Banach (1924)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le théorème Théorème: Si la fonction φ transforme d'une façon biunivoque l'ensemble A en un sous-ensemble de B et de même la fonction ψ transforme un sous-ensemble de A en l'ensemble B, il existe une décomposition des ensembles A et B: A = A_1+A_2, B=B_1+B_2 qui satisfait aux conditions: A_1 × A_2=0=B_1 × B_2, φ(A_1)=B_1 et ψ(A_2) = B_2 et d'en tirer quelques conséquences.
Edward Marczewski (1948)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1921)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de remarquer qu'on obtient une classe établissant un ordre dans l'ensemble donné M, en considérant une classe ℳ qui vérifie les quatres conditions suivantes: 1. Les éléments de classe ℳ sont des sous-ensembles (différents de M); 2. De deux ensembles-éléments de ℳ l'un est toujours contenu dans l'autre; 3. X étant un ensemble-élément de ℳ , il existe un élement x de X qui n'est pas élément d'aucun ensemble-élément de ℳ contenu dans X; 4. La classe ℳ est saturée...
Pierre Novikoff (1935)
Fundamenta Mathematicae
Similarity: