Note sur topologie exponentielle
M. Čoban (1971)
Fundamenta Mathematicae
Similarity:
M. Čoban (1971)
Fundamenta Mathematicae
Similarity:
Stefan Banach, Alfred Tarski (1924)
Fundamenta Mathematicae
Similarity:
Nous étudions dans cette note les notions de l'équivalence des ensembles de points par décomposition finie, resp. dénombrable. Les principaux résultats contenus dans le présent article sont les suivants: Théorème: Dans un espace euclidien à n ≥ 3 dimensions deux ensembles arbitraires, bornes et contenant des points intérieurs (par exemple deux sphères a rayons différentes), sont équivalents par décomposition finie. Un théorème analogue subsiste pour les ensembles situes sur la surface...
Casimir Kuratowski (1930)
Fundamenta Mathematicae
Similarity:
Jan Mařik (1957)
Studia Mathematica
Similarity:
Zenon Moszner (1966)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Z. Łomnicki, Stanisław Ulam (1934)
Fundamenta Mathematicae
Similarity:
Stanisław Saks (1921)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer l'équivalence de suivants théorèmes: Théorème 1: Si un ensemble fermé et borné F est contenu dans une somme des domaines, il existe un nombre fini de ces domaines G_1,G_2,...,G_n, tels que F ⊂ ∑_{i=1}^{n}G_i. et Théorème 2: Si ℱ est une famille des ensembles fermés dont l'un au moins est borné, telle que pour chaque nombre fini de ces ensembles leur produit ne soit pas vide, on a aussi: ∏ ℱ ≢ 0.
Casimir Kuratowski (1934)
Fundamenta Mathematicae
Similarity:
Stefan Mazurkiewicz (1922)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer: Théorème: Prémisse: A est un domaine plan. Thèses: il n'existe aucune [il existe une] décomposition A=A_1+A_2 telle que 1. A_1 × A_2 = 0; 2. A_1 et A_2 sont punctiformes; 3. A_1 est F_{σ} (donc A_2 est G_{δ}) [A_1 est F_{σδ} (donc A_2 est G_{σδ})];