The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The span and the width of continua”

Exactly two-to-one maps from continua onto some tree-like continua

Wojciech Dębski, J. Heath, J. Mioduszewski (1992)

Fundamenta Mathematicae

Similarity:

It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated...

Characterizing chainable, tree-like, and circle-like continua

Taras Banakh, Zdzisław Kosztołowicz, Sławomir Turek (2011)

Colloquium Mathematicae

Similarity:

We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover 𝓤₄ = {U₁,U₂,U₃,U₄} of X there is a 𝓤₄-map f: X → Y onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if and only if for each open cover 𝓤₃ = {U₁,U₂,U₃} of X there is a 𝓤₃-map f: X → Y onto a tree (or the interval [0,1]).

On uncountable collections of continua and their span

Dušan Repovš, Arkadij Skopenkov, Evgenij Ščepin (1996)

Colloquium Mathematicae

Similarity:

We prove that if the Euclidean plane 2 contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree X 2 such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.