Un théorème général sur les familles d'ensembles
Wacław Sierpiński (1928)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1928)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1925)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de définir, par des conditions très simples et naturelles, une classe K_0 d'ensembles linéaires, dont la nature est très difficile à étudier. Cette classe K_0 contiendra seulement un ensemble de puissance continu d'ensembles, mais elle sera très étendu, en contenant tous les ensembles (A) ainsi que leurs complémentaires, et encore d'autres ensembles de nature plus compliquée. En particulier, l'auteur ne saura pas déterminer la puissance des ensembles formant...
Wacław Sierpiński (1945)
Fundamenta Mathematicae
Similarity:
Jean-Pierre Kahane (1968)
Colloquium Mathematicae
Similarity:
Wacław Sierpiński (1921)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de remarquer qu'on obtient une classe établissant un ordre dans l'ensemble donné M, en considérant une classe ℳ qui vérifie les quatres conditions suivantes: 1. Les éléments de classe ℳ sont des sous-ensembles (différents de M); 2. De deux ensembles-éléments de ℳ l'un est toujours contenu dans l'autre; 3. X étant un ensemble-élément de ℳ , il existe un élement x de X qui n'est pas élément d'aucun ensemble-élément de ℳ contenu dans X; 4. La classe ℳ est saturée...
Wacław Sierpiński (1947)
Fundamenta Mathematicae
Similarity:
Casimir Kuratowski (1920)
Fundamenta Mathematicae
Similarity:
Le but de cette note est d'introduire une définition d'un ensemble fini et de démontrer son équivalence avec la définition donnée par Wacław Sierpiński.
Edward Marczewski (1948)
Fundamenta Mathematicae
Similarity:
Stefan Banach (1924)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le théorème Théorème: Si la fonction φ transforme d'une façon biunivoque l'ensemble A en un sous-ensemble de B et de même la fonction ψ transforme un sous-ensemble de A en l'ensemble B, il existe une décomposition des ensembles A et B: A = A_1+A_2, B=B_1+B_2 qui satisfait aux conditions: A_1 × A_2=0=B_1 × B_2, φ(A_1)=B_1 et ψ(A_2) = B_2 et d'en tirer quelques conséquences.
Julio Rubio, Francis Sergeraert (1986)
Cours de l'institut Fourier
Similarity:
Wacław Sierpiński (1921)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de donner une condition nécessaire et suffisante à laquelle doit satisfaire l'image d'une fonction, pour qu'elle soit représentable analytiquement.
Alfred Tarski (1924)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de développer la théorie des ensembles finis comme une partie de la Théorie générale des Ensembles et sans faire intervenir les notions ou théorèmes des nombres naturels.