Displaying similar documents to “On the axiomatic theory of spectrum II”

The Słodkowski spectra and higher Shilov boundaries

Vladimír Müller (1993)

Studia Mathematica

Similarity:

We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.

Vasilescu-Martinelli formula for operators in Banach spaces

V. Kordula, V. Müller (1995)

Studia Mathematica

Similarity:

We prove a formula for the Taylor functional calculus for functions analytic in a neighbourhood of the splitting spectrum of an n-tuple of commuting Banach space operators. This generalizes the formula of Vasilescu for Hilbert space operators and is closely related to a recent result of D. W. Albrecht.

Corrigendum and addendum: "On the axiomatic theory of spectrum II"

J. Koliha, M. Mbekhta, V. Müller, Pak Poon (1998)

Studia Mathematica

Similarity:

The main purpose of this paper is to correct the proof of Theorem 15 of [4], concerned with the stability of the class of quasi-Fredholm operators under finite rank perturbations, and to answer some open questions raised there.

On the axiomatic theory of spectrum

V. Kordula, V. Müller (1996)

Studia Mathematica

Similarity:

There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).

Axiomatic theory of spectrum III: semiregularities

Vladimír Müller (2000)

Studia Mathematica

Similarity:

We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).