The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Invariant densities for C¹ maps”

Most expanding maps have no absolutely continuous invariant measure

Anthony Quas (1999)

Studia Mathematica

Similarity:

We consider the topological category of various subsets of the set of expanding maps from a manifold to itself, and show in particular that a generic C 1 expanding map of the circle has no absolutely continuous invariant probability measure. This is in contrast with the situation for C 2 or C 1 + ε expanding maps, for which it is known that there is always a unique absolutely continuous invariant probability measure.

Piecewise convex transformations with no finite invariant measure

Tomasz Komorowski (1991)

Annales Polonici Mathematici

Similarity:

 Abstract. The paper concerns the problem of the existence of a finite invariant absolutely continuous measure for piecewise C 2 -regular and convex transformations T: [0, l]→[0,1]. We show that in the case when T’(0) = 1 and T"(0) exists T does not admit such a measure. This result is complementary to the ones contained in [3] and [5].

On systems of imprimitivity on locally compact abelian groups with dense actions

J. Mathew, M. G. Nadkarni (1978)

Annales de l'institut Fourier

Similarity:

Consider the four pairs of groups ( Γ , R ) , ( Γ / Γ 0 , R / Γ 0 ) , ( K S , P ) and ( S , B ) , where Γ , R are locally compact second countable abelian groups, Γ is a dense subgroup of R with inclusion map from Γ to R continuous; Γ 0 Γ R is a closed subgroup of R ; S , B are the duals of R and Γ respectively, and K is the annihilator of Γ 0 in B . Let the first co-ordinate of each pair act on the second by translation. We connect, by a commutative diagram, the systems of imprimitivity which arise in a natural fashion on each pair, starting...

Metric transitivity and integer valued functions

Solomon Schwartzman (1960)

Annales de l'institut Fourier

Similarity:

Soit X un espace mesurable de mesure μ finie ; φ : X X une application vérifiant μ ( φ - 1 ( S ) ) = μ ( S ) pour chaque ensemble mesurable S X . On donne des conditions nécessaires et suffisantes pour que X soit un ensemble ergodique.

On concentrated probabilities on non locally compact groups

Wojciech Bartoszek (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a Polish group with an invariant metric. We characterize those probability measures μ on G so that there exist a sequence g n G and a compact set A G with   μ * n ( g n A ) 1   for all n .