Some generalizations of the hypersingular integral operators
Michael Fisher (1973)
Studia Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Michael Fisher (1973)
Studia Mathematica
Similarity:
I. Gil’, Michael (2009)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: 47A56, 47A57,47A63 We derive bounds for the norms of the fractional powers of operators with compact Hermitian components, and operators having compact inverses in a separable Hilbert space. Moreover, for these operators, as well as for dissipative operators, the constants in the moment inequalities are established. * This research was supported by the Kamea Fund of Israel.
Celso Martinez, Miguel Sanz (1991)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Tosio Kato (1978)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
H. Hövel, U. Westphal (1972)
Studia Mathematica
Similarity:
Martinez, C., Sanz, M., Calvo, V. (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Martínez, Celso, Sanz, Miguel, Redondo, Antonia (2005)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: Primary 47A60, 47D06. In this paper, we extend the theory of complex powers of operators to a class of operators in Banach spaces whose spectrum lies in C ]−∞, 0[ and whose resolvent satisfies an estimate ||(λ + A)(−1)|| ≤ (λ(−1) + λm) M for all λ > 0 and for some constants M > 0 and m ∈ R. This class of operators strictly contains the class of the non negative operators and the one of operators with polynomially bounded resolvent....
Kiryakova, Virginia (2011)
Union of Bulgarian Mathematicians
Similarity:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата. ...