Some results on Banach spaces without local unconditional structure
Gilles Pisier (1978)
Compositio Mathematica
Similarity:
Gilles Pisier (1978)
Compositio Mathematica
Similarity:
Joram Lindenstrauss (1975-1976)
Séminaire Choquet. Initiation à l'analyse
Similarity:
J. C. Díaz (1987)
Collectanea Mathematica
Similarity:
Przemyslaw Wojtaszczyk (1972)
Mémoires de la Société Mathématique de France
Similarity:
M. Kadec (1971)
Studia Mathematica
Similarity:
Catherine Finet (1988)
Studia Mathematica
Similarity:
A. Pełczyński, P. Wojtaszczyk (1971)
Studia Mathematica
Similarity:
Alistair Bird, Niels Jakob Laustsen (2010)
Banach Center Publications
Similarity:
We create a new family of Banach spaces, the James-Schreier spaces, by amalgamating two important classical Banach spaces: James' quasi-reflexive Banach space on the one hand and Schreier's Banach space giving a counterexample to the Banach-Saks property on the other. We then investigate the properties of these James-Schreier spaces, paying particular attention to how key properties of their 'ancestors' (that is, the James space and the Schreier space) are expressed in them. Our main...
G. Henkin (1970)
Studia Mathematica
Similarity:
Dyer, James A. (1975)
Portugaliae mathematica
Similarity:
Miguel Martín, Javier Merí (2011)
Open Mathematics
Similarity:
A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.