The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Decreasing rearrangements and L p , q of the Bohr group”

Checkerboards, Lipschitz functions and uniform rectifiability.

Peter W. Jones, Nets Hawk Katz, Ana Vargas (1997)

Revista Matemática Iberoamericana

Similarity:

In his recent lecture at the International Congress [S], Stephen Semmes stated the following conjecture for which we provide a proof. Theorem. Suppose Ω is a bounded open set in Rn with n > 2, and suppose that B(0,1) ⊂ Ω, Hn-1(∂Ω) = M < ∞ (depending on n and M) and a Lipschitz graph Γ (with constant L) such that Hn-1(Γ ∩ ∂Ω) ≥ ε. Here H...

Quadratic tilt-excess decay and strong maximum principle for varifolds

Reiner Schätzle (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper, we prove that integral n -varifolds μ in codimension 1 with H μ L loc p ( μ ) , p > n , p 2 have quadratic tilt-excess decay tiltex μ ( x , ϱ , T x μ ) = O x ( ϱ 2 ) for μ -almost all x , and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature H μ , unless the smooth manifold is locally contained in the support of μ .

Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces

Luigi Ambrosio, Alessio Figalli (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We study points of density 1 / 2 of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density 1 / 2 is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.