Displaying similar documents to “Sharp local uncertainty inequalities”

Direct and Reverse Gagliardo-Nirenberg Inequalities from Logarithmic Sobolev Inequalities

Matteo Bonforte, Gabriele Grillo (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.

Lieb–Thirring inequalities with improved constants

Jean Dolbeault, Ari Laptev, Michael Loss (2008)

Journal of the European Mathematical Society

Similarity:

Following Eden and Foias we obtain a matrix version of a generalised Sobolev inequality in one dimension. This allows us to improve on the known estimates of best constants in Lieb–Thirring inequalities for the sum of the negative eigenvalues for multidimensional Schrödinger operators.

Pointwise inequalities for Sobolev functions and some applications

Bogdan Bojarski, Piotr Hajłasz (1993)

Studia Mathematica

Similarity:

We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions can be approximated by C m functions both in norm and capacity.

A sharp iteration principle for higher-order Sobolev embeddings

Andrea Cianchi, Luboš Pick, Lenka Slavíková (2014)

Banach Center Publications

Similarity:

We survey results from the paper [CPS] in which we developed a new sharp iteration method and applied it to show that the optimal Sobolev embeddings of any order can be derived from isoperimetric inequalities. We prove thereby that the well-known link between first-order Sobolev embeddings and isoperimetric inequalities translates to embeddings of any order, a fact that had not been known before. We show a general reduction principle that reduces Sobolev type inequalities of any order...

From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

Ivan Gentil (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on n , with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.