Displaying similar documents to “Stationary perturbations based on Bernoulli processes”

Ergodic properties of skew products with Lasota-Yorke type maps in the base

Zbigniew Kowalski (1993)

Studia Mathematica

Similarity:

We consider skew products T ( x , y ) = ( f ( x ) , T e ( x ) y ) preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and T i , i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T....

Weakly mixing but not mixing quasi-Markovian processes

Zbigniew Kowalski (2000)

Studia Mathematica

Similarity:

Let (f,α) be the process given by an endomorphism f and by a finite partition α = A i i = 1 s of a Lebesgue space. Let E(f,α) be the class of densities of absolutely continuous invariant measures for skew products with the base (f,α). We say that (f,α) is quasi-Markovian if E ( f , α ) g : B i i = 1 s s u p p g = i = 1 s A i × B i . We show that there exists a quasi-Markovian process which is weakly mixing but not mixing. As a by-product we deduce that the set of all coboundaries which are measurable with respect to the ’chequer-wise’ partition for σ ×...

Exactness of skew products with expanding fibre maps

Thomas Bogenschütz, Zbigniew Kowalski (1996)

Studia Mathematica

Similarity:

We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.

Weakly mixing transformations and the Carathéodory definition of measurable sets

Amos Koeller, Rodney Nillsen, Graham Williams (2007)

Colloquium Mathematicae

Similarity:

Let 𝕋 denote the set of complex numbers of modulus 1. Let v ∈ 𝕋, v not a root of unity, and let T: 𝕋 → 𝕋 be the transformation on 𝕋 given by T(z) = vz. It is known that the problem of calculating the outer measure of a T-invariant set leads to a condition which formally has a close resemblance to Carathéodory's definition of a measurable set. In ergodic theory terms, T is not weakly mixing. Now there is an example, due to Kakutani, of a transformation ψ̃ which is weakly mixing but...

On a pointwise ergodic theorem for multiparameter semigroups.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Similarity:

Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averages Anf(x) = (n + 1)-d Σ0≤ni≤n f(T1 n1 T2 n2...

Ergodic properties of skew products withfibre maps of Lasota-Yorke type

Zbigniew Kowalski (1994)

Applicationes Mathematicae

Similarity:

We consider the skew product transformation T(x,y)= (f(x), T e ( x ) ) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and T s s S is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary...

A joint limit theorem for compactly regenerative ergodic transformations

David Kocheim, Roland Zweimüller (2011)

Studia Mathematica

Similarity:

We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector (Zₙ,Sₙ), where Zₙ and Sₙ are respectively the time of the last visit before time n to, and the occupation time of, a suitable set Y of finite measure.

Infinite ergodic index d -actions in infinite measure

E. Muehlegger, A. Raich, C. Silva, M. Touloumtzis, B. Narasimhan, W. Zhao (1999)

Colloquium Mathematicae

Similarity:

We construct infinite measure preserving and nonsingular rank one d -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving d -actions; for these we show that the individual basis transformations have conservative...

Limit theory for some positive stationary processes with infinite mean

Jon Aaronson, Roland Zweimüller (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove stable limit theorems and one-sided laws of the iterated logarithm for a class of positive, mixing, stationary, stochastic processes which contains those obtained from nonintegrable observables over certain piecewise expanding maps. This is done by extending Darling–Kac theory to a suitable family of infinite measure preserving transformations.

Chaotic behavior of infinitely divisible processes

S. Cambanis, K. Podgórski, A. Weron (1995)

Studia Mathematica

Similarity:

The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.