The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A conjugate gradient method with quasi-Newton approximation”

Optimal stationary policies inrisk-sensitive dynamic programs with finite state spaceand nonnegative rewards

Rolando Cavazos-Cadena, Raúl Montes-de-Oca (2000)

Applicationes Mathematicae

Similarity:

This work concerns controlled Markov chains with finite state space and nonnegative rewards; it is assumed that the controller has a constant risk-sensitivity, and that the performance ofa control policy is measured by a risk-sensitive expected total-reward criterion. The existence of optimal stationary policies isstudied within this context, and the main resultestablishes the optimalityof a stationary policy achieving the supremum in the correspondingoptimality equation, whenever the...

On strong liftings for projective limits

N. Macheras, W. Strauss (1994)

Fundamenta Mathematicae

Similarity:

We discuss the permanence of strong liftings under the formation of projective limits. The results are based on an appropriate consistency condition of the liftings with the projective system called "self-consistency", which is fulfilled in many situations. In addition, we study the relationship of self-consistency and completion regularity as well as projective limits of lifting topologies.

The effect of rounding errors on a certain class of iterative methods

Ioannis Argyros (2000)

Applicationes Mathematicae

Similarity:

In this study we are concerned with the problem of approximating a solution of a nonlinear equation in Banach space using Newton-like methods. Due to rounding errors the sequence of iterates generated on a computer differs from the sequence produced in theory. Using Lipschitz-type hypotheses on the mth Fréchet derivative (m ≥ 2 an integer) instead of the first one, we provide sufficient convergence conditions for the inexact Newton-like method that is actually generated on the computer....