Manifolds of smooth maps IV : theorem of De Rham
P. Michor (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
P. Michor (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jerry M. Lodder (1998)
Annales de l'institut Fourier
Similarity:
We propose a definition of Leibniz cohomology, , for differentiable manifolds. Then becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
José Adolfo de Azcárraga, José Manuel Izquierdo, Juan Carlos Pérez Bueno (2001)
RACSAM
Similarity:
En esta nota se presenta en primer lugar una introducción autocontenida a la cohomología de álgebras de Lie, y en segundo lugar algunas de sus aplicaciones recientes en matemáticas y física.
Marc De Wilde, Pierre B. A. Lecomte (1982)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Simon Covez (2013)
Annales de l’institut Fourier
Similarity:
This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article...