Displaying similar documents to “The cohomology of the diffeomorphism group of a manifold is a Gelfand-Fuks cohomology”

Leibniz cohomology for differentiable manifolds

Jerry M. Lodder (1998)

Annales de l'institut Fourier

Similarity:

We propose a definition of Leibniz cohomology, H L * , for differentiable manifolds. Then H L * becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of H L * ( R n ; R ) reduce to those of formal vector fields, and can be identified with certain invariants of foliations.

The local integration of Leibniz algebras

Simon Covez (2013)

Annales de l’institut Fourier

Similarity:

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article...