The inverse Laplace transform of the product of two modified Bessel functions where n=1, 2, 3,...
F. M. Ragab (1963)
Annales Polonici Mathematici
Similarity:
F. M. Ragab (1963)
Annales Polonici Mathematici
Similarity:
Saifallah Ghobber (2015)
Czechoslovak Mathematical Journal
Similarity:
The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with...
Oscar Blasco (1988)
Colloquium Mathematicae
Similarity:
C. Ionescu-Tulcea, R. Maher (1971)
Annales de l'institut Fourier
Similarity:
Let be a locally compact space. A lifting of where is a positive measure on , is almost strong if for each bounded, continuous function , and coincide locally almost everywhere. We prove here that the set of all measures on such that there exists an almost strong lifting of is a band.
B. Hollenbeck, N. J. Kalton, I. E. Verbitsky (2003)
Studia Mathematica
Similarity:
We determine the norm in , 1 < p < ∞, of the operator , where and are respectively the cosine and sine Fourier transforms on the positive real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S. Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane. We also obtain the -norms of the operators aI + bH, where H is the Hilbert transform (conjugate function operator) on the circle or real line, for arbitrary real...
Romuald Lenczewski (2002)
Studia Mathematica
Similarity:
We introduce noncommutative extensions of the Fourier transform of probability measures and its logarithm to the algebra (S) of complex-valued functions on the free semigroup S = FS(z,w) on two generators. First, to given probability measures μ, ν with all moments finite, we associate states μ̂, ν̂ on the unital free *-bialgebra (ℬ,ε,Δ) on two self-adjoint generators X,X’ and a projection P. Then we introduce and study cumulants which are additive under the convolution μ̂* ν̂ = μ̂ ⊗...
Erik Talvila (2025)
Czechoslovak Mathematical Journal
Similarity:
For each () it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to . There is an exchange theorem and inversion in norm.
Grzegorz Plebanek (2002)
Fundamenta Mathematicae
Similarity:
Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no -points.
Saifallah Ghobber, Philippe Jaming (2014)
Studia Mathematica
Similarity:
The aim of this paper is to prove new uncertainty principles for integral operators with bounded kernel for which there is a Plancherel Theorem. The first of these results is an extension of Faris’s local uncertainty principle which states that if a nonzero function is highly localized near a single point then (f) cannot be concentrated in a set of finite measure. The second result extends the Benedicks-Amrein-Berthier uncertainty principle and states that a nonzero function and...
Helge Glöckner, Lutz G. Lucht, Štefan Porubský (2009)
Studia Mathematica
Similarity:
In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions g: ℕ → ℂ to convolution equations of the form , where are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form (), where is an additive subsemigroup. If X is discrete and a certain solvability criterion...
Albert Mas, Xavier Tolsa (2014)
Journal of the European Mathematical Society
Similarity:
For integers and , we prove that an -dimensional Ahlfors-David regular measure in is uniformly -rectifiable if and only if the -variation for the Riesz transform with respect to is a bounded operator in . This result can be considered as a partial solution to a well known open problem posed by G. David and S. Semmes which relates the boundedness of the Riesz transform to the uniform rectifiability of .
E. Ferreyra, T. Godoy, M. Urciuolo (2004)
Studia Mathematica
Similarity:
Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = (x,φ(x)): |x| ≤ 1 and let σ be the Borel measure on Σ defined by where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from to for certain p,q. For m ≥ 6 the results are sharp except for some border points.
M. Skwarczyński (1991)
Annales Polonici Mathematici
Similarity:
Bhikha Lila Ghodadra, Vanda Fülöp (2020)
Mathematica Bohemica
Similarity:
For a Lebesgue integrable complex-valued function defined on let be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that as . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of there is a definite rate at which the Walsh-Fourier transform tends...