On manifolds satisfying some curvature conditions
Ryszard Deszcz, Wiesław Grycak (1989)
Colloquium Mathematicae
Similarity:
Ryszard Deszcz, Wiesław Grycak (1989)
Colloquium Mathematicae
Similarity:
Uday Chand De, Avik De (2012)
Czechoslovak Mathematical Journal
Similarity:
The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field are geodesic. We also study some global properties...
Binh, T.Q., De, U.C., Tamássy, L. (2002)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Uday Chand De, Prajjwal Pal (2014)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat () is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained...
Giovanni Calvaruso (2010)
Archivum Mathematicum
Similarity:
We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.
Ewert-Krzemieniewski, Stanisław (2003)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Łuczyszyn, Dorota (2003)
Beiträge zur Algebra und Geometrie
Similarity: