Displaying similar documents to “Analysis of exact linearization and aproximate feedback linearization techniques.”

Rotary inverted pendulum: trajectory tracking via nonlinear control techniques

Luis E. Ramos-Velasco, Javier Ruiz, Sergej Čelikovský (2002)

Kybernetika

Similarity:

The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode...

Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction

Jianglin Lan, Weijie Sun, Yunjian Peng (2014)

Kybernetika

Similarity:

This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem....

Feedback linearization idle-speed control: design and experiments

Rolf Pfiffner, Lino Guzzella (1999)

Kybernetika

Similarity:

This paper proposes a novel nonlinear control algorithm for idle-speed control of a gasoline engine. This controller is based on the feedback linearization approach and extends this technique to the special structure and specifications of the idle-speed problem. Special static precompensations and cascaded loops are used to achieve the desired bandwidth separation between the fast spark and slow air-bypass action. A key element is the inclusion of the (engine-speed dependent) induction...