Displaying similar documents to “A conjugate gradient method with sufficient descent and global convergence for unconstrained nonlinear optimization.”

A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration

Zainab Hassan Ahmed, Mohamed Hbaib, Khalil K. Abbo (2024)

Applications of Mathematics

Similarity:

The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms...

Convex quadratic underestimation and Branch and Bound for univariate global optimization with one nonconvex constraint

Hoai An Le Thi, Mohand Ouanes (2006)

RAIRO - Operations Research

Similarity:

The purpose of this paper is to demonstrate that, for globally minimize one dimensional nonconvex problems with both twice differentiable function and constraint, we can propose an efficient algorithm based on Branch and Bound techniques. The method is first displayed in the simple case with an interval constraint. The extension is displayed afterwards to the general case with an additional nonconvex twice differentiable constraint. A quadratic bounding function which is better than...

A self-adaptive trust region method for the extended linear complementarity problems

Zhensheng Yu, Qiang Li (2009)

Applications of Mathematics

Similarity:

By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established...

A new nonmonotone adaptive trust region algorithm

Ahmad Kamandi, Keyvan Amini (2022)

Applications of Mathematics

Similarity:

We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild...