Multismoothness in Banach spaces.
Lin, Bor-Luh, Rao, T.S.S.R.K. (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lin, Bor-Luh, Rao, T.S.S.R.K. (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Marián J. Fabián, Václav Zizler (1999)
Czechoslovak Mathematical Journal
Similarity:
Every separable Banach space with -smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and -smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.
V. P. Fonf, P. Wojtaszczyk (2014)
Studia Mathematica
Similarity:
It follows from our earlier results [Israel J. Math., to appear] that in the Gurariy space G every finite-dimensional smooth subspace is contained in a bigger smooth subspace. We show that this property does not characterise the Gurariy space among Lindenstrauss spaces and we provide various examples to show that C(K) spaces do not have this property.
Park, Chun-Kee, Min, Won Keun, Kim, Myeong Hwan (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Gérald Tenenbaum (2006)
Acta Arithmetica
Similarity:
Marina Marchisio (2006)
Bollettino dell'Unione Matematica Italiana
Similarity:
We build a 54- (114-) dimensional family of smooth unirational quartic 3- (4-) folds.
M. Fabián, V. Zizler (1999)
Extracta Mathematicae
Similarity:
Jean-Pierre Rosay (1986)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Robert Deville, Vaclav E. Zizler (1988)
Manuscripta mathematica
Similarity:
Kankaanrinta, Marja (2005)
Journal of Lie Theory
Similarity:
Jacek Stasica (2003)
Annales Polonici Mathematici
Similarity:
It is proved that the set of smooth points of a semialgebraic set is semialgebraic.