Displaying similar documents to “Local classes and pairwise mutually permutable products of finite groups.”

Maximal subgroups and PST-groups

Adolfo Ballester-Bolinches, James Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig (2013)

Open Mathematics

Similarity:

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable...

On some soluble groups in which U -subgroups form a lattice

Leonid A. Kurdachenko, Igor Ya. Subbotin (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The article is dedicated to groups in which the set of abnormal and normal subgroups ( U -subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.

Subnormal, permutable, and embedded subgroups in finite groups

James Beidleman, Mathew Ragland (2011)

Open Mathematics

Similarity:

The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is...