The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The initial value problem for the quadratic nonlinear Klein-Gordon equation.”

On the hierarchies of higher order mKdV and KdV equations

Axel Grünrock (2010)

Open Mathematics

Similarity:

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces H ^ s r defined by the norm v 0 H ^ s r : = ξ s v 0 ^ L ξ r ' , ξ = 1 + ξ 2 1 2 , 1 r + 1 r ' = 1 . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ 2 j - 1 2 r ' . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < 2 j - 1 2 r ' . The results for r =...

Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations

Albert J. Milani, Hans Volkmer (2011)

Applications of Mathematics

Similarity:

We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation u t t + 2 u t - a i j ( u t , u ) i j u = f corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation - a i j ( 0 , v ) i j v = h . We then give conditions for the convergence, as t , of the solution of the evolution equation to its stationary state.