The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Annealed vs quenched critical points for a random walk pinning model”

Disorder relevance for the random walk pinning model in dimension 3

Matthias Birkner, Rongfeng Sun (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study the continuous time version of the , where conditioned on a continuous time random walk ( )≥0 on ℤ with jump rate > 0, which plays the role of disorder, the law up to time of a second independent random walk ( )0≤≤ with jump rate 1 is Gibbs transformed with weight e (,), where (, ) is the collision local time between and up to time . As the inverse temperature varies, the model undergoes a localization–delocalization...

Large deviations for voter model occupation times in two dimensions

G. Maillard, T. Mountford (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study the decay rate of large deviation probabilities of occupation times, up to time , for the voter model : ℤ×[0, ∞)→{0, 1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ∈(0, 1). In [ (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(), log()]. In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log() when the deviation...

Quantitative recurrence in two-dimensional extended processes

Françoise Pène, Benoît Saussol (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case of some extended dynamical systems similar to planar random walks, including ℤ-extension of mixing subshifts of finite type. We define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence...