On some model theoretic problems concerning certain extensions of abelian groups by groups of finite exponent
Carlo Toffalori (2000)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carlo Toffalori (2000)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Luise-Charlotte Kappe, M. J. Tomkinson (1998)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Enrico Jabara (2005)
Czechoslovak Mathematical Journal
Similarity:
In this note we study finite -groups admitting a factorization by an Abelian subgroup and a subgroup . As a consequence of our results we prove that if contains an Abelian subgroup of index then has derived length at most .
A. Abdollahi, A. Mohammadi Hassanabadi (2004)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Yongke Qu, Xingwu Xia, Lin Xue, Qinghai Zhong (2015)
Colloquium Mathematicae
Similarity:
Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.
Fred Clare (1976)
Colloquium Mathematicae
Similarity:
Anne C. Morel (1968)
Colloquium Mathematicae
Similarity:
Marta Morigi (1997)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
David B. Penman, Matthew D. Wells (2014)
Acta Arithmetica
Similarity:
We call a subset A of an abelian group G sum-dominant when |A+A| > |A-A|. If |A⨣A| > |A-A|, where A⨣A comprises the sums of distinct elements of A, we say A is restricted-sum-dominant. In this paper we classify the finite abelian groups according to whether or not they contain sum-dominant sets (respectively restricted-sum-dominant sets). We also consider how much larger the sumset can be than the difference set in this context. Finally, generalising work of Zhao, we provide asymptotic...
Kharazishvili, Aleksander (2015-11-18T12:34:03Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity: