Displaying similar documents to “Novel fault detection criteria based on linear quadratic control performances”

Actuator fault tolerant control design based on a reconfigurable reference input

Didier Theilliol, Cédric Join, Youmin Zhang (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified...

Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter

Saúl Montes de Oca, Vicenç Puig, Marcin Witczak, Łukasz Dziekan (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design procedure for the fault identification and fault-tolerant control schemes using LPV techniques is provided as well. Fault identification...

Reconfigurability analysis for reliable fault-tolerant control design

Ahmed Khelassi, Didier Theilliol, Philippe Weber (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper the integration of reliability evaluation in reconfigurability analysis of a fault-tolerant control system is considered. The aim of this work is to contribute to reliable fault-tolerant control design. The admissibility of control reconfigurability is analyzed with respect to reliability requirements. This analysis shows the relationship between reliability and control reconfigurability defined generally through Gramian controllability. An admissible solution for reconfigurability...

Active fault tolerant control of nonlinear systems: The cart-pole example

Marcello Bonfè, Paolo Castaldi, Nicola Mimmo, Silvio Simani (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper describes the design of fault diagnosis and active fault tolerant control schemes that can be developed for nonlinear systems. The methodology is based on a fault detection and diagnosis procedure relying on adaptive filters designed via the nonlinear geometric approach, which allows obtaining the disturbance de-coupling property. The controller reconfiguration exploits directly the on-line estimate of the fault signal. The classical model of an inverted pendulum on a cart...

Supervisory fault tolerant control of the GTM UAV using LPV methods

Tamás Péni, Báltin Vanek, Zoltán Szabó, József Bakor (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available...

Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems

Christopher Edwards, Halim Alwi, Chee Pin Tan (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications...

Nonlinear model predictive control of a boiler unit: A fault tolerant control study

Krzysztof Patan, Józef Korbicz (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of...

LPV design of fault-tolerant control for road vehicles

Péter Gáspár, Zoltán Szabó, József Bokor (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able...

A fault tolerant direct control allocation scheme with integral sliding modes

Mirza Tariq Hamayun, Christopher Edwards, Halim Alwi, Abdulrahman Bajodah (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be...