Displaying similar documents to “Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations”

Postprocessing of a finite volume element method for semilinear parabolic problems

Min Yang, Chunjia Bi, Jiangguo Liu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we study a postprocessing procedure for improving accuracy of the finite volume element approximations of semilinear parabolic problems. The procedure amounts to solve a source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time evolution is finished. We derive error estimates in the and norms for the standard finite volume element scheme and an improved error estimate in the ...

Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory

Akira Mizutani, Norikazu Saito, Takashi Suzuki (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L 1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L 1 and L , respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L 1 convergence without any convergence...

On discontinuous Galerkin method and semiregular family of triangulations

Aleš Prachař (2006)

Applications of Mathematics

Similarity:

Discretization of second order elliptic partial differential equations by discontinuous Galerkin method often results in numerical schemes with penalties. In this paper we analyze these penalized schemes in the context of quite general triangular meshes satisfying only a semiregularity assumption. A new (modified) penalty term is presented and theoretical properties are proven together with illustrative numerical results.