Displaying similar documents to “Bloch wave homogenization of linear elasticity system”

Fourier approach to homogenization problems

Carlos Conca, M. Vanninathan (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems...

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is guaranteed. The aim here is to develop all necessary spectral tools...

A non elliptic spectral problem related to the analysis of superconducting micro-strip lines

Anne-Sophie Bonnet-Bendhia, Karim Ramdani (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to - . Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization,...

Green’s function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this paper is to find estimates of the Green’s function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.