Displaying similar documents to “Numerical resolution of an “unbalanced” mass transport problem”

A Mixed Formulation of the Monge-Kantorovich Equations

John W. Barrett, Leonid Prigozhin (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We introduce and analyse a mixed formulation of the Monge-Kantorovich equations, which express optimality conditions for the mass transportation problem with cost proportional to distance. Furthermore, we introduce and analyse the finite element approximation of this formulation using the lowest order Raviart-Thomas element. Finally, we present some numerical experiments, where both the optimal transport density and the associated Kantorovich potential are computed for a coupling problem and...

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S , which is the total work of the...

Numerical solution of a 1-d elastohydrodynamic problem in magnetic storage devices

Iñigo Arregui, José Jesús Cendán, Carlos Parés, Carlos Vázquez (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this work we present new numerical methods to simulate the mechanics of head-tape magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method...

Optimal multiphase transportation with prescribed momentum

Yann Brenier, Marjolaine Puel (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.

Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations

Michael Westdickenberg, Jon Wilkening (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Both the porous medium equation and the system of isentropic Euler equations can be considered as steepest descents on suitable manifolds of probability measures in the framework of optimal transport theory. By discretizing these variational characterizations instead of the partial differential equations themselves, we obtain new schemes with remarkable stability properties. We show that they capture successfully the nonlinear features of the flows, such as shocks and rarefaction...