The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Constraints on distributions imposed by properties of linear forms”

Penultimate approximation for the distribution of the excesses

Rym Worms (2002)

ESAIM: Probability and Statistics

Similarity:

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that F u ( x ) , where F u is the d.f of the excesses over u , converges, when u tends to s + ( F ) , the end-point of F , to G γ ( x σ ( u ) ) , where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ > - 1 , a function Λ which verifies lim u s + ( F ) Λ ( u ) = γ and is such that Δ ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ Λ ( u ) ( x / σ ( u ) ) | converges to 0 faster than d ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ γ ( x / σ ( u ) ) | .

Asymptotic behavior of solutions of a 2 n t h order nonlinear differential equation

C. S. Lin (2002)

Czechoslovak Mathematical Journal

Similarity:

In this paper we prove two results. The first is an extension of the result of G. D. Jones [4]: (A) Every nontrivial solution for ( - 1 ) n u ( 2 n ) + f ( t , u ) = 0 , in ( α , ) , u ( i ) ( ξ ) = 0 , i = 0 , 1 , , n - 1 , and ξ ( α , ) , must be unbounded, provided f ( t , z ) z 0 , in E × and for every bounded subset I , f ( t , z ) is bounded in E × I . (B) Every bounded solution for ( - 1 ) n u ( 2 n ) + f ( t , u ) = 0 , in , must be constant, provided f ( t , z ) z 0 in × and for every bounded subset I , f ( t , z ) is bounded in × I .

The Laplace derivative

Ralph E. Svetic (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A function f : is said to have the n -th Laplace derivative on the right at x if f is continuous in a right neighborhood of x and there exist real numbers α 0 , ... , α n - 1 such that s n + 1 0 δ e - s t [ f ( x + t ) - i = 0 n - 1 α i t i / i ! ] d t converges as s + for some δ > 0 . There is a corresponding definition on the left. The function is said to have the n -th Laplace derivative at x when these two are equal, the common value is denoted by f n ( x ) . In this work we establish the basic properties of this new derivative and show that, by an example, it is more general than...

On the non-commutative neutrix product ln x + x + - s

Brian Fisher, Adem Kiliçman, Blagovest Damyanov, J. C. Ault (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The non-commutative neutrix product of the distributions ln x + and x + - s is proved to exist for s = 1 , 2 , ... and is evaluated for s = 1 , 2 . The existence of the non-commutative neutrix product of the distributions x + - r and x + - s is then deduced for r , s = 1 , 2 , ... and evaluated for r = s = 1 .