Displaying similar documents to “A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals : an application to KDP”

A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP

Christophe Besse, Brigitte Bidégaray-Fesquet, Antoine Bourgeade, Pierre Degond, Olivier Saut (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties...

Towards a framework for continuous and discrete multidimensional systems

Rudolf Rabenstein, Lutz Trautmann (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

Continuous multidimensional systems described by partial differential equations can be represented by discrete systems in a number of ways. However, the relations between the various forms of continuous, semi-continuous, and discrete multidimensional systems do not fit into an established framework like in the case of one-dimensional systems. This paper contributes to the development of such a framework in the case of multidimensional systems. First, different forms of partial differential...

Mathematical models for laser-plasma interaction

Rémi Sentis (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we...

Simulations of gravity wave induced turbulence using 512 PE Cray T3E

Joseph Prusa, Piotr Smolarkiewicz, Andrzej Wyszogrodzki (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

A 3D nonhydrostatic, Navier-Stokes solver has been employed to simulate gravity wave induced turbulence at mesopause altitudes. This paper extends our earlier 2D study reported in the literature to three spatial dimensions while maintaining fine resolution required to capture essential physics of the wave breaking. The calculations were performed on the 512 processor Cray T3E machine at the National Energy Research Scientific Computing Center (NERSC) in Berkeley. The physical results...

Simulation of electrophysiological waves with an unstructured finite element method

Yves Bourgault, Marc Ethier, Victor G. LeBlanc (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

Mathematical models for laser-plasma interaction

Rémi Sentis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we...