The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “ M ( r , s ) -ideals of compact operators”

Unconditional ideals of finite rank operators

Trond A. Abrahamsen, Asvald Lima, Vegard Lima (2008)

Czechoslovak Mathematical Journal

Similarity:

Let X be a Banach space. We give characterizations of when ( Y , X ) is a u -ideal in 𝒲 ( Y , X ) for every Banach space Y in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ( X , Y ) is a u -ideal in 𝒲 ( X , Y ) for every Banach space Y , when ( Y , X ) is a u -ideal in 𝒲 ( Y , X * * ) for every Banach space Y , and when ( Y , X ) is a u -ideal in 𝒦 ( Y , X * * ) for every Banach space Y .

M -ideals of compact operators into p

Kamil John, Dirk Werner (2000)

Czechoslovak Mathematical Journal

Similarity:

We show for 2 p < and subspaces X of quotients of L p with a 1 -unconditional finite-dimensional Schauder decomposition that K ( X , p ) is an M -ideal in L ( X , p ) .

Strict u-ideals in Banach spaces

Vegard Lima, Åsvald Lima (2009)

Studia Mathematica

Similarity:

We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition X * * * = X * X is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c₀. We also show that is not a u-ideal.

Unconditional ideals in Banach spaces

G. Godefroy, N. Kalton, P. Saphar (1993)

Studia Mathematica

Similarity:

We show that a Banach space with separable dual can be renormed to satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition X * * * = X X * is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel X . We undertake a general study of h-ideals and u-ideals. For example...