M -ideals of compact operators into p

Kamil John; Dirk Werner

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 1, page 51-57
  • ISSN: 0011-4642

Abstract

top
We show for 2 p < and subspaces X of quotients of L p with a 1 -unconditional finite-dimensional Schauder decomposition that K ( X , p ) is an M -ideal in L ( X , p ) .

How to cite

top

John, Kamil, and Werner, Dirk. "$M$-ideals of compact operators into $\ell _p$." Czechoslovak Mathematical Journal 50.1 (2000): 51-57. <http://eudml.org/doc/30540>.

@article{John2000,
abstract = {We show for $2\le p<\infty $ and subspaces $X$ of quotients of $L_\{p\}$ with a $1$-unconditional finite-dimensional Schauder decomposition that $K(X,\ell _\{p\})$ is an $M$-ideal in $L(X,\ell _\{p\})$.},
author = {John, Kamil, Werner, Dirk},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact operator; -ideal; Rademacher cotype},
language = {eng},
number = {1},
pages = {51-57},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$M$-ideals of compact operators into $\ell _p$},
url = {http://eudml.org/doc/30540},
volume = {50},
year = {2000},
}

TY - JOUR
AU - John, Kamil
AU - Werner, Dirk
TI - $M$-ideals of compact operators into $\ell _p$
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 51
EP - 57
AB - We show for $2\le p<\infty $ and subspaces $X$ of quotients of $L_{p}$ with a $1$-unconditional finite-dimensional Schauder decomposition that $K(X,\ell _{p})$ is an $M$-ideal in $L(X,\ell _{p})$.
LA - eng
KW - compact operator; -ideal; Rademacher cotype
UR - http://eudml.org/doc/30540
ER -

References

top
  1. 10.2307/1970895, Ann. of Math. 96 (1972), 98–173. (1972) MR0352946DOI10.2307/1970895
  2. Notes on approximation properties in separable Banach spaces, Geometry of Banach Spaces, Proc. Conf. Strobl 1989, P. F. X. Müller and W. Schachermayer (eds.), London Mathematical Society Lecture Note Series 158, Cambridge University Press, 1990, pp. 49–63. (1990) MR1110185
  3. Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59. (1993) MR1208038
  4. M -Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin-Heidelberg-New York, 1993. (1993) MR1238713
  5. 10.1215/ijm/1255987254, Illinois J. Math. 37 (1993), 147–169. (1993) Zbl0824.46029MR1193134DOI10.1215/ijm/1255987254
  6. Property ( M ) , M -ideals and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178. (1995) MR1324212
  7. 10.4064/sm-113-3-249-263, Studia Math. 113 (1995), 249–263. (1995) Zbl0826.46013MR1330210DOI10.4064/sm-113-3-249-263
  8. Complex unconditional metric approximation property for C Λ ( 𝐓 ) spaces, Preprint (1995). (1995) MR1424701
  9. c p , Israel J. Math. 5 (1967), 249–271. (1967) MR0225140
  10. Dual de l’espace des opérateurs linéaires continus, C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983–986. (1989) Zbl0684.47025MR1054748
  11. 10.1017/S0305004100075447, Math. Proc. Cambridge Phil. Soc. 111 (1992), 337–354. (1992) Zbl0787.46020MR1142754DOI10.1017/S0305004100075447

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.