Displaying similar documents to “Modified power divergence estimators in normal models – simulation and comparative study”

Several applications of divergence criteria in continuous families

Michel Broniatowski, Igor Vajda (2012)

Kybernetika

Similarity:

This paper deals with four types of point estimators based on minimization of information-theoretic divergences between hypothetical and empirical distributions. These were introduced (i) by Liese and Vajda [9] and independently Broniatowski and Keziou [3], called here power superdivergence estimators, (ii) by Broniatowski and Keziou [4], called here power subdivergence estimators, (iii) by Basu et al. [2], called here power pseudodistance estimators, and (iv) by Vajda [18] called here...

Robust median estimator for generalized linear models with binary responses

Tomáš Hobza, Leandro Pardo, Igor Vajda (2012)

Kybernetika

Similarity:

The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally...

An efficient estimator for Gibbs random fields

Martin Janžura (2014)

Kybernetika

Similarity:

An efficient estimator for the expectation f P ̣ is constructed, where P is a Gibbs random field, and f is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.