Displaying similar documents to “Sequential closures of σ -subalgebras for a vector measure”

A compact Hausdorff topology that is a T₁-complement of itself

Dmitri Shakhmatov, Michael Tkachenko (2002)

Fundamenta Mathematicae

Similarity:

Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces ( X , τ X ) and ( Y , τ Y ) are called T₁-complementary provided that there exists a bijection f: X → Y such that τ X and f - 1 ( U ) : U τ Y are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2 which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact...

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

S. Gabriyelyan, J. Kąkol, G. Plebanek (2016)

Studia Mathematica

Similarity:

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability...

Topological properties of some spaces of continuous operators

Marian Nowak (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C b ( X , E ) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study topological properties of the space L β ( C b ( X , E ) , F ) of all ( β , | | · | | F ) -continuous linear operators from C b ( X , E ) to F, equipped with the topology τ s of simple convergence. If X is a locally compact paracompact space (resp. a P-space), we characterize τ s -compact subsets of L β ( C b ( X , E ) , F ) in terms of properties of the corresponding sets of the representing...

On FU( p )-spaces and p -sequential spaces

Salvador García-Ferreira (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Following Kombarov we say that X is p -sequential, for p α * , if for every non-closed subset A of X there is f α X such that f ( α ) A and f ¯ ( p ) X A . This suggests the following definition due to Comfort and Savchenko, independently: X is a FU( p )-space if for every A X and every x A - there is a function f α A such that f ¯ ( p ) = x . It is not hard to see that p RK q ( RK denotes the Rudin–Keisler order) every p -sequential space is q -sequential every FU( p )-space is a FU( q )-space. We generalize the spaces S n to construct examples of...

Invariant subspaces for operators in a general II1-factor

Uffe Haagerup, Hanne Schultz (2009)

Publications Mathématiques de l'IHÉS

Similarity:

Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace 𝒦 = 𝒦 T ( B ) affiliated with ℳ, such that the Brown measure of T | 𝒦 is concentrated...

Lattice copies of c₀ and in spaces of integrable functions for a vector measure

S. Okada, W. J. Ricker, E. A. Sánchez Pérez

Similarity:

The spaces L¹(m) of all m-integrable (resp. L ¹ w ( m ) of all scalarly m-integrable) functions for a vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, lcHs), are themselves lcHs for the mean convergence topology. Additionally, L ¹ w ( m ) is always a complex vector lattice; this is not necessarily so for L¹(m). To identify precisely when L¹(m) is also a complex vector lattice is one of our central aims. Whenever X is sequentially complete, then this is the case. If,...

Order intervals in C ( K ) . Compactness, coincidence of topologies, metrizability

Zbigniew Lipecki (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let K be a compact space and let C ( K ) be the Banach lattice of real-valued continuous functions on K . We establish eleven conditions equivalent to the strong compactness of the order interval [ 0 , x ] in C ( K ) , including the following ones: (i) { x > 0 } consists of isolated points of K ; (ii) [ 0 , x ] is pointwise compact; (iii) [ 0 , x ] is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on [ 0 , x ] ; (v) the strong and weak topologies coincide on [ 0 , x ] . Moreover, the weak topology and that of pointwise...

Characteristic points, rectifiability and perimeter measure on stratified groups

Valentino Magnani (2006)

Journal of the European Mathematical Society

Similarity:

We establish an explicit connection between the perimeter measure of an open set E with C 1 boundary and the spherical Hausdorff measure S Q 1 restricted to E , when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and Q denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of E is less than or equal to S Q 1 ( E ) up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli,...

Kempisty's theorem for the integral product quasicontinuity

Zbigniew Grande (2006)

Colloquium Mathematicae

Similarity:

A function f: ℝⁿ → ℝ satisfies the condition Q i ( x ) (resp. Q s ( x ) , Q o ( x ) ) at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology of ℝⁿ (resp. strong density topology, ordinary density topology) there is an open set I such that I ∩ U ≠ ∅ and | ( 1 / μ ( U I ) ) U I f ( t ) d t - f ( x ) | < r . Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.

On the structure of non-dentable subsets of C ( ω ω k )

Pericles D. Pavlakos, Minos Petrakis (2011)

Studia Mathematica

Similarity:

It is shown that there is no closed convex bounded non-dentable subset K of C ( ω ω k ) such that on subsets of K the PCP and the RNP are equivalent properties. Then applying the Schachermayer-Rosenthal theorem, we conclude that every non-dentable K contains a non-dentable subset L so that on L the weak topology coincides with the norm topology. It follows from known results that the RNP and the KMP are equivalent on subsets of C ( ω ω k ) .

Denseness and Borel complexity of some sets of vector measures

Zbigniew Lipecki (2004)

Studia Mathematica

Similarity:

Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets ν ( X ) and ν ( X ) of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient...

Radon-Nikodym property

Surjit Singh Khurana (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a Banach space E and a probability space ( X , 𝒜 , λ ) , a new proof is given that a measure μ : 𝒜 E , with μ λ , has RN derivative with respect to λ iff there is a compact or a weakly compact C E such that | μ | C : 𝒜 [ 0 , ] is a finite valued countably additive measure. Here we define | μ | C ( A ) = sup { k | μ ( A k ) , f k | } where { A k } is a finite disjoint collection of elements from 𝒜 , each contained in A , and { f k } E ' satisfies sup k | f k ( C ) | 1 . Then the result is extended to the case when E is a Frechet space.